| Status | Subtype | Assigned | Task | ||
|---|---|---|---|---|---|
| Resolved | awight | T187836 [Epic] Audit of pending ORES GUI deployments | |||
| Resolved | awight | T156518 Deploy ORES Review Tool on Romanian Wikipedia | |||
| Resolved | Catrope | T170723 Deploy ORES Review Tool & ORES-based RCFilters for Romanian & Albanian Wikipedia | |||
| Resolved | awight | T170485 ORES deployment - Mid July, 2017 | |||
| Duplicate | None | T156501 Enable ORES Review Tool in Romanian Wikipedia | |||
| Resolved | None | T130213 [Epic] Edit quality models (damaging/goodfaith) | |||
| Resolved | Halfak | T166045 Scoring platform team FY18 Q1 | |||
| Resolved | Sumit | T156503 Build damaging/goodfaith models for Romanian Wikipedia | |||
| Resolved | Halfak | T156517 Complete Romanian Wikipedia edit quality campaign | |||
| Resolved | None | T156357 Deploy edit quality campaign for Romanian Wikipedia |
Event Timeline
Comment Actions
Damaging:
make models/rowiki.damaging.gradient_boosting.model
cat datasets/rowiki.labeled_revisions.w_cache.20k_2016.json | \
revscoring cv_train \
revscoring.scorer_models.GradientBoosting \
editquality.feature_lists.rowiki.damaging \
damaging \
--version=0.3.0 \
-p 'max_depth=5' \
-p 'learning_rate=0.01' \
-p 'max_features="log2"' \
-p 'n_estimators=700' \
-s 'table' -s 'accuracy' -s 'precision' -s 'recall' -s 'pr' -s 'roc' -s 'recall_at_fpr(max_fpr=0.10)' -s 'filter_rate_at_recall(min_recall=0.9)' -s 'filt
er_rate_at_recall(min_recall=0.75)' -s 'recall_at_precision(min_precision=0.995)' -s 'recall_at_precision(min_precision=0.99)' -s 'recall_at_precision(min_precision=0.98
)' -s 'recall_at_precision(min_precision=0.90)' -s 'recall_at_precision(min_precision=0.75)' -s 'recall_at_precision(min_precision=0.60)' -s 'recall_at_precision(min_pre
cision=0.45)' -s 'recall_at_precision(min_precision=0.15)' \
--balance-sample-weight \
--center --scale > models/rowiki.damaging.gradient_boosting.model
2017-06-27 08:00:43,699 INFO:revscoring.utilities.cv_train -- Cross-validating model statistics for 10 folds...
2017-06-27 08:00:44,352 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 1...
2017-06-27 08:03:13,756 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 2...
2017-06-27 08:05:56,730 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 3...
2017-06-27 08:08:40,903 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 4...
2017-06-27 08:11:27,209 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 5...
2017-06-27 08:14:17,733 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 6...
2017-06-27 08:17:35,238 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 7...
2017-06-27 08:20:17,584 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 8...
2017-06-27 08:23:33,992 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 9...
2017-06-27 08:26:46,826 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 10...
2017-06-27 08:29:07,741 INFO:revscoring.utilities.cv_train -- Training model on all data...
ScikitLearnClassifier
- type: GradientBoosting
- params: max_leaf_nodes=null, learning_rate=0.01, min_samples_split=2, verbose=0, center=true, warm_start=false, n_estimators=700, presort="auto", balanced_sample_weig
ht=true, loss="deviance", min_samples_leaf=1, balanced_sample=false, init=null, random_state=null, subsample=1.0, max_features="log2", scale=true, min_weight_fraction_le
af=0.0, max_depth=5
- version: 0.3.0
- trained: 2017-06-27T08:29:32.376824
Table:
~False ~True
----- -------- -------
False 17212 1678
True 109 828
Accuracy: 0.91
Precision:
----- -----
False 0.994
True 0.33
----- -----
Recall:
----- -----
False 0.911
True 0.881
----- -----
PR-AUC:
----- -----
False 0.994
True 0.54
----- -----
ROC-AUC:
----- -----
False 0.959
True 0.963
----- -----
Recall @ 0.1 false-positive rate:
label threshold recall fpr
------- ----------- -------- -----
False 0.548 0.904 0.094
True 0.444 0.916 0.098
Filter rate @ 0.9 recall:
label threshold filter_rate recall
------- ----------- ------------- --------
False 0.569 0.138 0.9
True 0.455 0.866 0.906
Filter rate @ 0.75 recall:
label threshold filter_rate recall
------- ----------- ------------- --------
False 0.915 0.284 0.75
True 0.777 0.915 0.752
Recall @ 0.995 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.564 0.901 0.995
True 0.962 0.038 1
Recall @ 0.99 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.331 0.934 0.99
True 0.962 0.038 1
Recall @ 0.98 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.128 0.968 0.98
True 0.962 0.038 1
Recall @ 0.9 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.038 1 0.954
True 0.959 0.051 0.981
Recall @ 0.75 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.038 1 0.954
True 0.945 0.164 0.787
Recall @ 0.6 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.038 1 0.954
True 0.923 0.351 0.608
Recall @ 0.45 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.038 1 0.954
True 0.827 0.706 0.454
Recall @ 0.15 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.038 1 0.954
True 0.105 0.981 0.189Comment Actions
Goodfaith:
make models/rowiki.goodfaith.gradient_boosting.model [97/1922]
cat datasets/rowiki.labeled_revisions.w_cache.20k_2016.json | \
revscoring cv_train \
revscoring.scorer_models.GradientBoosting \
editquality.feature_lists.rowiki.goodfaith \
goodfaith \
--version=0.3.0 \
-p 'max_depth=3' \
-p 'learning_rate=0.1' \
-p 'max_features="log2"' \
-p 'n_estimators=300' \
-s 'table' -s 'accuracy' -s 'precision' -s 'recall' -s 'pr' -s 'roc' -s 'recall_at_fpr(max_fpr=0.10)' -s 'filter_rate_at_recall(min_recall=0.9)' -s 'filt
er_rate_at_recall(min_recall=0.75)' -s 'recall_at_precision(min_precision=0.995)' -s 'recall_at_precision(min_precision=0.99)' -s 'recall_at_precision(min_precision=0.98
)' -s 'recall_at_precision(min_precision=0.90)' -s 'recall_at_precision(min_precision=0.75)' -s 'recall_at_precision(min_precision=0.60)' -s 'recall_at_precision(min_pre
cision=0.45)' -s 'recall_at_precision(min_precision=0.15)' \
--balance-sample-weight \
--center --scale > models/rowiki.goodfaith.gradient_boosting.model
2017-06-27 13:11:03,053 INFO:revscoring.utilities.cv_train -- Cross-validating model statistics for 10 folds...
2017-06-27 13:11:03,907 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 1...
2017-06-27 13:13:54,482 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 2...
2017-06-27 13:17:12,485 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 3...
2017-06-27 13:19:46,401 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 4...
2017-06-27 13:22:17,370 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 5...
2017-06-27 13:25:08,119 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 6...
2017-06-27 13:27:31,615 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 7...
2017-06-27 13:29:51,620 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 8...
2017-06-27 13:32:09,126 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 9...
2017-06-27 13:34:20,776 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 10...
2017-06-27 13:36:25,349 INFO:revscoring.utilities.cv_train -- Training model on all data...
ScikitLearnClassifier
- type: GradientBoosting
- params: max_features="log2", min_samples_leaf=1, min_weight_fraction_leaf=0.0, warm_start=false, balanced_sample=false, balanced_sample_weight=true, center=true, loss
="deviance", min_samples_split=2, max_leaf_nodes=null, verbose=0, max_depth=3, random_state=null, n_estimators=300, learning_rate=0.1, scale=true, subsample=1.0, init=nu
ll, presort="auto"
- version: 0.3.0
- trained: 2017-06-27T13:36:32.777290
Table:
~False ~True
----- -------- -------
False 489 81
True 1393 17864
Accuracy: 0.926
Precision:
----- -----
False 0.26
True 0.995
----- -----
Recall:
----- -----
False 0.856
True 0.928
----- -----
PR-AUC:
----- -----
False 0.469
True 0.994
----- -----
ROC-AUC:
----- -----
False 0.964
True 0.962
----- -----
Recall @ 0.1 false-positive rate:
label threshold recall fpr
------- ----------- -------- -----
False 0.278 0.93 0.097
True 0.634 0.914 0.093
Filter rate @ 0.9 recall:
label threshold filter_rate recall
------- ----------- ------------- --------
False 0.37 0.89 0.907
True 0.738 0.124 0.9
Filter rate @ 0.75 recall:
label threshold filter_rate recall
------- ----------- ------------- --------
False 0.76 0.933 0.754
True 0.972 0.271 0.75
Recall @ 0.995 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.987 0.04 1
True 0.414 0.936 0.995
Recall @ 0.99 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.987 0.04 1
True 0.174 0.964 0.991
Recall @ 0.98 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.987 0.04 1
True 0.059 0.991 0.98
Recall @ 0.9 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.986 0.052 0.99
True 0.013 1 0.972
Recall @ 0.75 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.977 0.107 0.808
True 0.013 1 0.972
Recall @ 0.6 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.951 0.296 0.616
True 0.013 1 0.972
Recall @ 0.45 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.914 0.49 0.46
True 0.013 1 0.972
Recall @ 0.15 precision:
label threshold recall precision
------- ----------- -------- -----------
False 0.098 0.968 0.161
True 0.013 1 0.972